

3D Desktop Composite

A system for joining 3D printed polymer /composite layers to the surface of fibre composite materials

Opportunity

Composite overmoulding is a process of moulding polymer features to the surface of composite materials using an injection moulding system. These specialised systems are costly and require a bespoke steel/aluminium mould be made for each design.

This invention comprises a novel method of joining of 3D printed polymer /composite layers to the surface of fibre composite materials, resulting in a new process we have coined over-printing.

Technology Overview

The system can print various polymers directly onto the surface of a composite panel. It requires no moulds and can be cost effective for a single production run. In addition, this process can use multiple polymers simultaneously to maximise the performance of the part, whereas conventional moulding is limited to a single polymer per moulding cycle. The bond strengths have been shown to reach 6Mpa in adhesion testing

(ASTM 4541), and up to 44Mpa in Interlaminar shear strength (ASTM 2344).

Key Features/Advantages:

Enables single batch production at lower cost than conventional overmoulding techniques.

Low Capital Cost: Does not require injection moulding equipment

Speed: Allows rapid prototyping and manufacturing without the need for moulds

Optimised Materials: Can design the composite / 3D printed components to take advantage of their combined materials properties

FUNDERS:

Value Proposition:

Low cost way to build small scale batches of high performance materials, with bond strength that match industry norms.

Markets:

Aerospace and automotive R&D design centers

Lead Inventors: Dr Andrew Dickson and Prof Denis Dowling

IP Status/Publication: Trade-secret

Contact: Hugh Hayden Knowledge Transfer t: + 353 1 716 3725 e: Hugh.hayden@ucd.ie